Analysis of tissue flow patterns during primitive streak formation in the chick embryo.
نویسندگان
چکیده
We have investigated the patterns of tissue flow underlying the formation of the primitive streak in the chick embryo. Analysis of time-lapse sequences of brightfield images to extract the tissue velocity field and of fluorescence images of small groups of DiI-labelled cells have shown that epiblast cells move in two large-scale counter-rotating streams, which merge at the site of streak formation. Despite the large-scale tissue flows, individual cells appear to move little relative to their neighbours. As the streak forms, it elongates in both the anterior and posterior directions. Inhibition of actin polymerisation via local application of the inhibitor latrunculin A immediately terminates anterior extension of the streak tip, but does not prevent posterior elongation. Inhibition of actin polymerisation at the base of the streak completely inhibits streak formation, implying that continuous movement of cells into the base of the forming streak is crucial for extension. Analysis of cycling cells in the early embryo shows that cell-cycle progression in the epiblast is quite uniform before the primitive streak forms then decreases in the central epiblast and incipient streak and increases at the boundary between the area pellucida and area opaca during elongation. The cell-cycle inhibitor aphidicolin, at concentrations that completely block cell-cycle progression, permits initial streak formation but arrests development during extension. Our analysis suggests that cell division maintains the cell-flow pattern that supplies the streak with cells from the lateral epiblast, which is critical for epiblast expansion in peripheral areas, but that division does not drive streak formation or the observed tissue flow.
منابع مشابه
Cell movement during chick primitive streak formation.
Gastrulation in amniotes begins with extensive re-arrangements of cells in the epiblast resulting in the formation of the primitive streak. We have developed a transfection method that enables us to transfect randomly distributed epiblast cells in the Stage XI-XIII chick blastoderms with GFP fusion proteins. This allows us to use time-lapse microscopy for detailed analysis of the movements and ...
متن کاملModeling Gastrulation in the Chick Embryo: Formation of the Primitive Streak
The body plan of all higher organisms develops during gastrulation. Gastrulation results from the integration of cell proliferation, differentiation and migration of thousands of cells. In the chick embryo gastrulation starts with the formation of the primitive streak, the site of invagination of mesoderm and endoderm cells, from cells overlaying Koller's Sickle. Streak formation is associated ...
متن کاملTsukushi cooperates with VG1 to induce primitive streak and Hensen's node formation in the chick embryo.
Three classes of signaling molecule, VG1, WNT and BMP, play crucial roles in axis formation in the chick embryo. Although VG1 and WNT signals have a pivotal function in inducing the primitive streak and Hensen's node in the embryo midline, their action is complemented by that of BMP antagonists that protect the prospective axial tissue from the inhibitory influence of BMPs secreted from the per...
متن کاملThe chicken CdxA homeobox gene and axial positioning during gastrulation.
The chicken homebox containing gene, CdxA (formerly CHox-cad), was previously shown to be expressed during gastrulation. Localization of CdxA transcripts by in situ hybridization to tissue sections revealed that, during gastrulation, expression of this gene exhibits a posterior localization along the primitive streak. The transcripts are localized to epiblast cells in the vicinity of the primit...
متن کاملWaves and periodic events during primitive streak formation in the chick.
Morphogenetic movements occurring during formation of the primitive streak in the chick embryo are of a periodic nature, with a mean frequency of one pulse every 2.6 min. The period of the oscillatory movement is shown to be temperature-dependent. The onset of these pulses of movement can be seen as a slow wave starting at the posterior end of the embryo and making its way towards the anterior ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental biology
دوره 284 1 شماره
صفحات -
تاریخ انتشار 2005